Desarrollo de una ecuación para el cálculo del factor de fricción en accesorios y piezas especiales
Date
Subject
Factor de fricción
diagrama de Moody
flujo laminar
flujo turbulento
MATLAB
Friction factor
Moody's chart
laminar flow
turbulent flow
MATLAB
diagrama de Moody
flujo laminar
flujo turbulento
MATLAB
Friction factor
Moody's chart
laminar flow
turbulent flow
MATLAB
Language:
Journal Title
Journal ISSN
Volume Title
Publisher
Instituto Tecnológico de Santo Domingo (INTEC)
En el presente trabajo se desarrolló una ecuación para calcular el factor de fricción para piezas especiales (codos, reducciones de tuberías, llaves de paso) y accesorios (válvulas, difusores de presión, calentadores) utilizando la ecuación de Darcy-Weisbach para obtener un valor estimado de las pérdidas de energía que se tienen cuando un fluido a cierta velocidad y con cierta viscosidad pasa a través de accesorios o piezas especiales. Para llegar a la ecuación se propuso partir de las premisas que toda pérdida de energía por fricción de un fluido es causada por la velocidad, pero se refleja en la presión. Además, se asumió que los accesorios y piezas especiales siempre trabajan en turbulencia total. Para esta investigación se utilizó ingeniería inversa a lo que normalmente se hace al calcular el factor de fricción para las piezas especiales y accesorios que consiste en utilizar el Diagrama de Moody (1944) para estos fines. El diagrama de Moody tiene como abscisa los valores del Número de Reynolds que definen el régimen de velocidad (turbulencia o laminar) de un fluido obteniendo de forma gráfica el valor de fricción. Para desarrollar la ecuación se buscó el valor del factor de fricción para cada valor en mil de Reynolds. Utilizando MATLAB se construyeron varias curvas y se analizó el porcentaje de error versus el diagrama de Moody. La ecuación que tuvo un error de aproximación de fracciones racionales (RAT2) por debajo de 0.99.
In the present work, an equation was developed that can calculate the friction factor (fT) for special parts (elbows, pipe reductions, stopcocks) and accessories (valves, pressure diffusers, heaters) using the Darcy-Weisbach equation to obtain an estimate value of the energy losses that occur when a fluid at a certain speed and with a certain viscosity passes through fittings or special parts. To arrive at the equation, it was proposed to start from the premises that any loss of energy due to friction of a fluid is caused by velocity but is reflected in pressure. In addition, accessories and special parts always work in total turbulence. For this research, reverse engineering was used to calculate the friction factor for special parts and accessories, which consists of using the Moody Diagram (1944) for these purposes. The Moody diagram has as an abscissa the values of the Reynolds Number that define the velocity regime (turbulence or laminar) of a fluid, obtaining the friction value graphically. To develop the equation, the value of f T for each Reynolds value in thousand was sought. Using MATLAB, several curves were constructed, and the error percentage was analyzed against the Moody's chart. The equation that had a Rational Fraction Approximation (RAT2) error below 0.99.
In the present work, an equation was developed that can calculate the friction factor (fT) for special parts (elbows, pipe reductions, stopcocks) and accessories (valves, pressure diffusers, heaters) using the Darcy-Weisbach equation to obtain an estimate value of the energy losses that occur when a fluid at a certain speed and with a certain viscosity passes through fittings or special parts. To arrive at the equation, it was proposed to start from the premises that any loss of energy due to friction of a fluid is caused by velocity but is reflected in pressure. In addition, accessories and special parts always work in total turbulence. For this research, reverse engineering was used to calculate the friction factor for special parts and accessories, which consists of using the Moody Diagram (1944) for these purposes. The Moody diagram has as an abscissa the values of the Reynolds Number that define the velocity regime (turbulence or laminar) of a fluid, obtaining the friction value graphically. To develop the equation, the value of f T for each Reynolds value in thousand was sought. Using MATLAB, several curves were constructed, and the error percentage was analyzed against the Moody's chart. The equation that had a Rational Fraction Approximation (RAT2) error below 0.99.
Description
Type
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Art.
info:eu-repo/semantics/publishedVersion
Art.
Source
Science, Engineering and Applications; Vol. 7 No. 2 (2024): Science, Engineering and Applications; 111-135
Ciencia, Ingenierías y Aplicaciones; Vol. 7 Núm. 2 (2024): Ciencia, Ingenierías y Aplicaciones; 111-135
2636-2171
2636-218X
10.22206/cite.2024.v7i2
Ciencia, Ingenierías y Aplicaciones; Vol. 7 Núm. 2 (2024): Ciencia, Ingenierías y Aplicaciones; 111-135
2636-2171
2636-218X
10.22206/cite.2024.v7i2