Show simple item record

La complejidad química de las gasolinas de automoción

dc.creatorBoluda, Carlos José
dc.creatorMacías, Mariana
dc.creatorGonzález Marrero, Joaquín
dc.date2019-12-12
dc.date.accessioned2020-09-10T20:26:57Z
dc.date.available2020-09-10T20:26:57Z
dc.identifierhttps://revistas.intec.edu.do/index.php/cite/article/view/1569
dc.identifier10.22206/cyap.2019.v2i2.pp51-79
dc.identifier.urihttps://repositoriobiblioteca.intec.edu.do/handle/123456789/2832
dc.descriptionUsed mainly as fuels in internal combustion engines, gasolines are complex mixtures of hydrocarbons that include in their composition different additives that improve their stability and performance. Its chemical composition is not only diverse but also variable, depending on the crude oil origin, the obtaining process and the existing regulations, which fix the maximum allowed content of certain compounds that should be limited due to their toxicity. Gasolines are obtained by fractional distillation of petroleum and also from heavier fractions of petroleum by thermal or catalytic cracking, processes that together with catalytic reforming will have a direct impact on their composition. The objective of this review is to address the complex composition of gasoline, as well as some basic processes of oil refining, which largely determine its composition and which are closely related to the emission of polluting substances. In this way, we provide a more accurate context on the pollutants of gasoline and its impact on the environment, while we highlight the need for advanced regulations to regulate the composition of fuels.en-US
dc.descriptionUtilizadas principalmente como combustibles en motores de combustión interna, las gasolinas son mezclas complejas de hidrocarburos que incluyen en su composición distintos aditivos para mejorar su estabilidad y prestaciones. Su composición química es no solo diversa, sino también variable, dependiendo del crudo de procedencia, del proceso de obtención y de las normativas existentes. Estas fijan el contenido máximo permitido de determinados compuestos que, por su toxicidad, deben quedar limitados. Las gasolinas se obtienen por destilación fraccionada del petróleo y también a partir de fracciones más pesadas del mismo, mediante craqueo térmico o catalítico, procesos que junto al reformado catalítico van a tener una incidencia directa en su composición. El objetivo de esta revisión es abordar la compleja composición que presentan las gasolinas, así como algunos procesos básicos del refinado de petróleo. Estos procesos determinan en buena medida la naturaleza química de los componentes de este combustible, algunos de los cuales se relacionan con la emisión de sustancias nocivas para la salud y el medio ambiente. De esta forma, proporcionamos un contexto más exacto sobre los agentes contaminantes de la gasolina, a la vez que ponemos de manifiesto la necesidad de contar con normativas avanzadas que regulen la composición de los combustibles.es-ES
dc.formatapplication/pdf
dc.formattext/html
dc.languagespa
dc.publisherInstituto Tecnológico de Santo Domingo (INTEC)es-ES
dc.relationhttps://revistas.intec.edu.do/index.php/cite/article/view/1569/2165
dc.relationhttps://revistas.intec.edu.do/index.php/cite/article/view/1569/2170
dc.relation/*ref*/Australian Government. (2000). Department of the Environment and Energy. Environment Australia (National Heritage Trust), Setting National Fuel Quality Standards —Paper 2— Proposed Standards for Fuel Parameters (Petrol and Diesel), Canberra, Australia.
dc.relation/*ref*/Australian Government. (2014). Department of the Environment and Energy. International fuel quality standards and their implications for australian standards. Final report. Hartenergy Research & Consulting. Disponible en https://www.environment.gov.au/system/files/resources/f83ff2dc-87a7-4cf9-ab24-6c25f2713f9e/files/international-feul-quality-standards.pdf [acceso 15 de abril 2019].
dc.relation/*ref*/Brudzewski, K., Kesik, A., Kołodziejczyk, K., Zborowska, U. & Ulaczyk, J. (2006). Gasoline quality prediction using gas chromatography and FTIR spectroscopy: An artificial intelligence approach, Fuel, 85(4), 553-558.
dc.relation/*ref*/Curiale, J.A. & Frolov, E.B. (1998). Occurrence and origin of olefins in crude oils. A critical review. Organic Geochemistry, 29, 397-408.
dc.relation/*ref*/Dhar, G.M., Kumaran, G.M., Kumar, M., Rawat, K.S., Sharma, L.D., Raju, B.D. & Rao, K.S.R. (2005). Physico-chemical characterization and catalysis on SBA-15 supported molybdenum hydrotreating catalysts, Catalysis Today, 99, 309-314.
dc.relation/*ref*/Demirbas, A., Balubaid, M.A., Basahel, A.M., Ahmad, W. & Sheikh, M.H. (2015). Octane rating of gasoline and octane booster additives. Petroleum Science and Technology, 33, 1190–1197.
dc.relation/*ref*/Directiva98/70/CE del Parlamento Europeo y del Consejo de 13 de octubre de 1998 relativa a la calidad de la gasolina y el gasóleo y por la que se modifica la Directiva 93/12/CEE del Consejo. Disponible en: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG: 1998L0070:20031120:ES:PDF
dc.relation/*ref*/Donald, J.M., Hooper, K. & Hopenhayn-Rich, C. (1991). Perspectives reproductive and developmental toxicity of toluene: a review, Environmental Health, 94, 237-244.
dc.relation/*ref*/Durbin, T.D., Miller, J.W., Younglove, T., Huai, T. & Cocker, K. (2007). Effects of fuel ethanol content and volatility on regulated and unregulated exhaust emissions for the latest technology gasoline vehicles. Environmental Science & Technology, 41, 4059−4064.
dc.relation/*ref*/Fung, F. (2011). Best Practices for Fuel Quality Inspection Programs. International Council on Clean Transportation. Working paper No. 2011-11, Washington, November, 2011. [acceso 15 de abril 2019]. Disponible en: https://www.theicct.org/sites/default/files/publications/ICCT_fuelqualityBP_nov2011.pdf
dc.relation/*ref*/Gary, J.H. & Handwerk, G.E. (1980). Refino del petróleo: tecnología y economía. Editorial Reverté. 37-186. Barcelona, España.
dc.relation/*ref*/Hajbabaei, M., Karavalakis, G., Miller, W.J., Villela, M., Huaying, X.K. & Durbin T.D. (2013). Impact of olefin content of criteria and toxic emissions from modern gasoline vehicles, Fuel, 107, 671−679.
dc.relation/*ref*/Harley, R.A., Hooper, D.S., Kean, A.J., Kirchstetter, T.W., Hesson, J.M., Balberan, N.T., Stevenson, E.D. & Kendall, G.R. (2006). Effects of reformulated gasoline and motor vehicle fleet turnover on emissions and ambient concentrations of benzene. Environmental Science & Technology, 40, 5084−5088.
dc.relation/*ref*/Karavalakis, G., Short, D., Vu, D., Russell, R., Hajbabaei, M., Asa-Awuku, A. & Durbin, T.D. (2015). Evaluating the effects of aromatics content in gasoline on gaseous and particulate matter emissions from SI-PFI and SIDI vehicle. Environmental Science & Technology, 49, 7021-7031.
dc.relation/*ref*/Khalade, A., Jaakkola, M.S., Pukkala, E. & Jaakkola, J.J.K. (2010). Exposure to benzene at work and the risk of leukemia: a systematic review and meta-analysis. Environmental Health, 9, (31),1-8. Disponible en: https://ehjournal.biomedcentral.com/track/pdf/ 10.1186/1476-069X-9-31
dc.relation/*ref*/Kinsara, R.A. & Demirbas, A. (2016). Upgrading of crude oil via distillation processes. Petroleum Science and Technology, 34(14), 1300-1306.
dc.relation/*ref*/Kirchstetter, T.W., Singer, B., Harley, R.A., Kendalland, G.R. & Traverse, M. (1999). Impact of California reformulated gasoline on motor vehicle emissions. 1. Mass emission rates. Environmental Science & Technology, 33, 318-328.
dc.relation/*ref*/Lee, D.M., Lee, D.H. & Hwang, I.H. (2018). Gasoline quality assessment using fast gas chromatography and partial least-squares regression for the detection of adulterated gasoline, Energy Fuels, 32(10), 10556–10562.
dc.relation/*ref*/Li, S., Zhang, Q., Sun, X., Fan, Q. & Chen, J. (2007). Distillation yields and properties from blending crude oils: Maxila and cabinda crude oils, maxila and daqing crude oils, Energy Fuels, 21, 1145–1150.
dc.relation/*ref*/Mengual. J. (2009). Craqueo térmico y catalítico, con y sin vapor de agua, de alcanos sobre zeolitas. Cinética, desactivación y estabilización del catalizador, (tesis doctoral). Universitat de Valencia, Valencia, España. Disponible en: tdx.cat/bitstream/handle/10803/31944/mengual.pdf?sequence=1
dc.relation/*ref*/Nabgan, W., Rashidzadeh, M. & Nabgan, B. (2018). The catalytic naphtha reforming process: hydrodesulfurization, catalysts and zeoforming, Environmental Chemistry Letters, 16, 507–522.
dc.relation/*ref*/Orr, W.L. & Damste, J. S. S. (1990). Geochemistry of sulfur in petroleum systems, En W. L. Orr and C. M. White (ed.), Geochemistry of sulfur in fossil fuels. American Chemical Society, Washington, D.C, p. 2-29.
dc.relation/*ref*/Palencia, F.D., Folgeras, M.B. & Gómez, F. (2014). Influencia de los aditivos oxigenados sobre las propiedades de las gasolinas. Universidad de Oviedo, Master Universitario en Ingeniería Energética España. Disponible en: http://digibuo.uniovi.es/dspace/bitstream/10651/27919/3/TFMFranciscoDanielPalenciaProteg.pdf
dc.relation/*ref*/Perdih, A. & Perdih, F. (2006). Chemical interpretation of octane number. Acta Chimica Slovenica. 53, 306–315.
dc.relation/*ref*/Pradelle, F., Braga, S.L., Martins, A.R.F.A., Turkovics, F. & Pradelle, R.N.C. (2015). Gum Formation in Gasoline and Its Blends: A Review. Energy Fuels, 29, 7753–7770.
dc.relation/*ref*/Ramadhan, O.M. & Al-Hyali, E.A. (1999). New experimental and theoretical relation to determine the research octane number (RON) of authentic aromatic hydrocarbons could be present in the gasoline fraction. Petroleum Science and Technology, 17, 623-635.
dc.relation/*ref*/Re-Poppi, N., Alemeida, F.F.P., Cardoso, C.A.L., Raposo Jr, J.L., Viana, L.H. & Silva, T.Q. (2009). Screening analysis of type C Brazilian gasoline by gas chromatography-Flame ionization detector. Fuel, 88, 418-423.
dc.relation/*ref*/Ritter, S. What’s that stuff? Gasoline. (2005). Chemical & Engineering News, 83(8), 37.
dc.relation/*ref*/Rodríguez, N. (2012). Análisis de la reducción del azufre en el combustible diesel en El Salvador, Guatemala, Honduras y Nicaragua. Ministerio Federal de Cooperación Económica y desarrollo (Alemania); Comisión Económica para América Latina y el Caribe (CEPAL). Disponible en: https://repositorio.cepal.org/handle/11362/26095
dc.relation/*ref*/Sadrameli, S.M. (2015). Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review I: Thermal cracking review. Fuel, 140, 102-115.
dc.relation/*ref*/Salimi, A., Vaghar-Moussavi, M., Seydi, E. & Pourahmad, J. (2016). Toxicity of methyl tertiary-butyl ether on human blood lymphocytes. Environmental Science and Pollution Research, 23, 8556-8564.
dc.relation/*ref*/Schifter, I., Díaz, L., Gonzalez, U. & González-Macias, C. (2013). Fuel formulation for recent model light duty vehicles in Mexico base on a model for predicting gasoline emissions. Fuel, 107, 371−381.
dc.relation/*ref*/Schobert, H.H. (1990). The Chemistry of Hydrocarbon Fuels (1st ed.). Londres, Inglaterra: Butterworth & Co (Publishers), 58-63, 184-196, 211-246.
dc.relation/*ref*/Songolzadeh, M., Soleimani, M. & Behnood, R. (2013). A brief review of methyl tert-butyl ether (MTBE) removal from contaminated air and water. Research Journal Chemistry Environment, 17, 90-97.
dc.relation/*ref*/Swick, D., Jaques, A., Walker, J.C. & Estreicher, H. (2014). Gasoline risk management: A compendium of regulations, standards, and industry practices. Regulatory Toxicology and Pharmacology, 70, 80−92.
dc.relation/*ref*/Trapp, S., Yu, X. & Mosbaek, X. H. (2003). Persistence of methyl tertiary butyl ether (MTBE) against metabolism by danish vegetation. Environmental Science and Pollution Research, 10, 357-360.
dc.relation/*ref*/United States Environmental Protection Agency (US-EPA). (2017). Health Effects of Ozone in the General Population. Disponible en: https://www.epa.gov/ozone-pollution-and-your-patients-health/health-effects-ozone-general-population
dc.relation/*ref*/United States Environmental Protection Agency (US-EPA). (2008). AP 42, (5th Edition), Volume I. Chapter 5: Petroleum Industry, Transportation and marketing of Petroleum Liquids. Disponible en: www.epa.gov/ttn/chief/ap42/ch05/final/c05s02.pdf
dc.relation/*ref*/Vempatapu, B.P. & Kanaujia, P.K. (2017). Monitoring petroleum fuel adulteration: A review of analytical methods, Trends in Analytical Chemistry, 92, 1-11.
dc.relation/*ref*/Verma, DK., des Tombe, K. (2002). Benzene in gasoline and crude oil: occupational and environmental implications. AIHA Journal. 63, 225-230.
dc.relation/*ref*/Vogt, E.T.C., Weckhuysen, B. M (2015). Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chemical Society Reviews, 44, 7342-7370.
dc.relation/*ref*/Von Euler, M., Phama, M.T., Hillefors, Mi., Börje, B., Henriksson, B. & Von Euler, G. (2000). Inhalation of low concentrations of toluene induces persistent effects on a learning retention task, beam-walk performance, and cerebrocortical size in the rat. Experimental Neurology, 163, 1-8.
dc.relation/*ref*/Wheals, A. E., Basso, L. C., Alves, D. M. G. & Amorim. H.V. (1999). Fuel ethanol after 25 years. Trends in Biothecnology, 17, 482-487.
dc.relation/*ref*/Wiedemann, L.S.M., d´Avila, L.A. & Azevedo, D. A. (2005). Brazilian gasoline quality: Study of adulteration by statistical and gas chromatography. Journal of the Brazilian Chemical Society, 16(2), 139-146.
dc.relation/*ref*/World Wide Fuel Charter. (2013). European Automobile Manufacturers Association (ACEA) & Alliance of Automobile Manufacturers, Truck and Engine Manufacturers Association (EMA) & Japan Automobile Manufacturers Association (JAMA). (5th Edition). Disponible en: https://www.acea.be/uploads/publications/Worldwide_Fuel_Charter_5ed_2013.pdf
dc.relation/*ref*/Yang, M., Kim, S. H., Kim, J. C., Shin, T. & Moon, C. (2010). Toluene induces depression-like behaviors in adult mice. Toxicological Research, 26, 315-320.
dc.relation/*ref*/Yao, Y. C. & Tsai, J. H. (2013). Effects of gasoline aromatic content on emissions of volatile organic compounds and aldehydes from a four-stroke motorcycle. Environmental Technology, 34, 2531-2539.
dc.relation/*ref*/Yardley-Jones, A., Anderson, D. & Parke, D. V. (1991). The toxicity of benzene and its metabolism and molecular pathology in human risk assessment. The British Journal of Industrial Medicine, 48, 437-444.
dc.rightsDerechos de autor 2019 Ciencia, Ingenierías y Aplicacioneses-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/es-ES
dc.sourceScience, Engineering and Applications; Vol 2 No 2 (2019): Science, Engineering and Applications; 51-79en-US
dc.sourceCiencia, Ingenierías y Aplicaciones; Vol. 2 Núm. 2 (2019): Ciencia, Ingenierías y Aplicaciones; 51-79es-ES
dc.source2636-2171
dc.source2636-218X
dc.source10.22206/cyap.2019.v2i2
dc.subjectgasolineen-US
dc.subjectoctane indexen-US
dc.subjectthermal crackingen-US
dc.subjectcatalytic crackingen-US
dc.subjectcatalytic reformingen-US
dc.subjectgasolinaes-ES
dc.subjectoctanajees-ES
dc.subjectcraqueo térmicoes-ES
dc.subjectcraqueo catalíticoes-ES
dc.subjectreformado catalíticoes-ES
dc.titleThe chemical complexity of automotive gasolinesen-US
dc.titleLa complejidad química de las gasolinas de automociónes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeNotaes-ES


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record