Validación de un método heurístico de optimización basado en un sistema de infección por virus
dc.creator | Díaz Payano, Claudia A. | |
dc.date | 2020-05-28 | |
dc.date.accessioned | 2020-09-10T20:26:58Z | |
dc.date.available | 2020-09-10T20:26:58Z | |
dc.description | In optimization problems, different algorithms can be used to find the right solution. But when it comes to problems of medium and high complexity, such as difficult NPs, techniques known as Genetic Algorithms (GA) have a hard time converging or coming up with a solution. This article presents the implementation of a Virus System (VS, for its acronym in English Virus System), which is developed with a new approach to solve optimization problems simulating the way an organism is attacked by a virus. The VS analogy is applied to two types of problems, Onemax, of different bit lengths and deceptive functions (Deceptive Functions) with the aim of checking their operation and their convergence power. This method is compared to a GA inspired by the growth of marine corals. The VS has managed to achieve high precision results, with 100% convergence in both problems and with considerable improvements compared to those obtained with the GA. | en-US |
dc.description | En los problemas de optimización se pueden utilizar diferentes algoritmos para encontrar la solución adecuada. Pero cuando se trata de problemas de complejidad media y alta, como los NP difíciles, las técnicas conocidas como los Algoritmos Genéticos (GA) tiene dificultad en converger o llegar a una solución. En este artículo se presenta la implementación de un Sistema de Virus (VS, por sus siglas en inglés Virus System), que se desarrolla con un nuevo enfoque para resolver problemas de optimización simulando la forma en que un organismo es atacado por un virus. La analogía del VS se aplica a dos tipos de problemas, Onemax, de diferentes longitudes de bits y funciones engañosas (Deceptive Functions) con el objetivo de comprobar su funcionamiento y su potencia de convergencia. Este método es comparado con un GA inspirado en el crecimiento de corales marinos. El VS ha logrado conseguir resultados de alta precisión, con una convergencia del 100 % en ambos problemas y con considerables mejoras comparados con los obtenidos con el GA. | es-ES |
dc.format | application/pdf | |
dc.format | text/html | |
dc.identifier | https://revistas.intec.edu.do/index.php/cite/article/view/1738 | |
dc.identifier | 10.22206/cyap.2020.v3i1.pp85-112 | |
dc.identifier.uri | https://repositoriobiblioteca.intec.edu.do/handle/123456789/2836 | |
dc.language | spa | |
dc.publisher | Instituto Tecnológico de Santo Domingo (INTEC) | es-ES |
dc.relation | https://revistas.intec.edu.do/index.php/cite/article/view/1738/2270 | |
dc.relation | https://revistas.intec.edu.do/index.php/cite/article/view/1738/2277 | |
dc.relation | /*ref*/Bey, K. B., Bouzand, S., Benhammadi, F. y Nacer, H. (2019). Improved virus optimization algorithm for two-objective tasks scheduling in cloud environment. In Proceedings of the federated conference on computer science and information systems (pp. 109-117). Doi: 10.15439/2019F63 | |
dc.relation | /*ref*/Carson, J. (2017). Genetic Algorithms: Advances in Research and Applications. New York, EE. UU.: Nova Science Publishers, Inc. | |
dc.relation | /*ref*/Cortés, P., García, J. M., Onieva, L., Muñuzuri, J. y Guadix, J. (2008). Viral System: A new bio-inspired optimisation approach. Computers & Operations Research, 35, 2840-2860. | |
dc.relation | /*ref*/Cortés, P., García, J. M., Muñuzuri, J. & Guadix, J. (2012). "Viral system algorithm: foundations and comparison between selective and massive infections". Transactions of the Institute of Measurement & Control, 34(6), 677–690. Doi:10.15439/2019F63 | |
dc.relation | /*ref*/Del Valle, Y., Kumar, G., S. Mohagheghi, S., Hernandez, J.C. y Harley, R.G. (2007). Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems. IEEE Transactions on Evolutionary Computation, 12(2): 171–195. | |
dc.relation | /*ref*/Doerr, B. y Neumann, F. (2020). Theory of Evolutionary Computation: Recent Developments. In Discrete Optimization, Switzerland: Springer. | |
dc.relation | /*ref*/Du, K.L. y Swamy, M. N. S. (2016). Search and Optimization by Metaheuristics, Techniques and Algorithms Inspired by Nature, Basel Switzerland: Birkhäuser. | |
dc.relation | /*ref*/Harrington, D. (2017). Bacteriophages: An Overview and Synthesis of a Re-Emerging Field (Bacteriology Research Developments). New York, EE. UU.: Nova Science Publishers, Inc | |
dc.relation | /*ref*/Lira, C.F., (s. f.). Phage life cycle, [en línea]. Disponible en https://www.lifeder.com/ciclo-lisogenico/ | |
dc.relation | /*ref*/López, J. (2015). Optimización Multi-objetivo. Aplicaciones a problemas en el mundo real. La Plata, Argentina: EDULP | |
dc.relation | /*ref*/Loeffelholz, M. J., Hodinka, R. L., Pinsky, B. & Young, S. A. (2016). Clinical Virology Manual. (Fifth ed.). Washington DC., EE. UU.: ASM Press | |
dc.relation | /*ref*/Mahy, B. W. J. (2001). A Dictionary of Virology: Vol. 3rd ed. California, EE.UU.: Academic Press. | |
dc.relation | /*ref*/Microdok, (s.f). Types of Virus, [en línea]. Disponible en https://microdok.com/taxonomy-of-viruses/ | |
dc.relation | /*ref*/Microinmuno, Bacteriofagos. (s.f.). Disponible en http://www.microinmuno.qb.fcen.uba.ar/SeminarioBacteriofagos.htm | |
dc.relation | /*ref*/Miskevich, F. (2016). Microbiology. Florida, EEUU: QuickStudy Reference Guides | |
dc.relation | /*ref*/Tong, L., Dong, M., Ai, B. y Jing. C. (2018). A Simple Butterfly Particle Swarm Optimization Algorithm with the Fitness-based Adaptive Inertia Weight and the Opposition-based Learning Average Elite Strategy., Fundamenta Informaticae, 163(2), 205–223 | |
dc.relation | /*ref*/Xinjie Y. y Mitsuo G. (2010). Introduction to evolutionary algorithms. London, England: Springer | |
dc.rights | Derechos de autor 2020 Ciencia, Ingenierías y Aplicaciones | es-ES |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/4.0/ | es-ES |
dc.source | Science, Engineering and Applications; Vol 3 No 1 (2020): Science, Engineering and Applications; 85-112 | en-US |
dc.source | Ciencia, Ingenierías y Aplicaciones; Vol. 3 Núm. 1 (2020): Ciencia, Ingenierías y Aplicaciones; 85-112 | es-ES |
dc.source | 2636-2171 | |
dc.source | 2636-218X | |
dc.source | 10.22206/cyap.2020.v3i1 | |
dc.subject | virus infection | en-US |
dc.subject | heuristic optimization method | en-US |
dc.subject | bacteriophage | en-US |
dc.subject | Genetic Algorithms | en-US |
dc.subject | Deceptive Functions | en-US |
dc.subject | infección por virus | es-ES |
dc.subject | método heurístico de optimización | es-ES |
dc.subject | bacteriófago | es-ES |
dc.subject | algoritmos genético | es-ES |
dc.subject | funciones engañosas | es-ES |
dc.title | Validation of Heuristic Optimization Method based on a virus infection system | en-US |
dc.title | Validación de un método heurístico de optimización basado en un sistema de infección por virus | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Nota | es-ES |